25 research outputs found

    Functional Anatomy: Dynamic States in Basal Ganglia Circuits

    Get PDF
    The most appealing models of how the basal ganglia function propose distributed patterns of cortical activity selectively interacting with striatal networks to yield the execution of context-dependent movements. If movement is encoded by patterns of activity then these may be disrupted by influences at once more subtle and more devastating than the increase or decrease of neuronal firing that dominate the usual models of the circuit. In the absence of dopamine the compositional capabilities of cell assemblies in the network could be disrupted by the generation of dominant synchronous activity that engages most of the system. Experimental evidence about Parkinson's disease suggests that dopamine loss produces abnormal patterns of activity in different nuclei. For example, increased oscillatory activity arises in the GPe, GPi, and STN and is reflected as increased cortical beta frequency coherence disrupting the ability to produce motor sequences. When the idea of deep brain stimulation was proposed – it was supported by the information that lesions of the subthalamus reversed the effects of damage to the dopamine input to the system. However, it seems increasingly unlikely that the stimulation acts by silencing the nucleus as was at first proposed. Perhaps the increased cortical beta activity caused by the lack of dopamine could have disabled the patterning of network activity. Stimulation of the subthalamic nucleus disrupts the on-going cortical rhythms. Subsequently asynchronous firing is reinstated and striatal cell assemblies and the whole basal ganglia circuit engage in a more normal pattern of activity. We will review the different variables involved in the generation of sequential activity patterns, integrate our data on deep brain stimulation and network population dynamics, and thus provide a novel interpretation of functional aspects of basal ganglia circuitry

    Prelimbic cortical targets of ventromedial thalamic projections include inhibitory interneurons and corticostriatal pyramidal neurons in the rat

    Get PDF
    Ventromedial thalamic axons innervate cortical layer I and make contacts onto the apical dendritic tuft of pyramidal neurons. Optical stimulation of ventromedial thalamic axon terminals in prefrontal cortical areas in mouse brain slices evokes responses in corticocortical, corticothalamic and layer I inhibitory interneurons. Using anterograde tracing techniques and immunohistochemistry in male Sprague–Dawley rats, we provide anatomical evidence that ventromedial thalamic axon terminals in prelimbic cortex make contacts onto pyramidal neurons and, in particular, onto corticostriatal neurons as well as layer I inhibitory interneurons. Using stereology, we made quantitative estimates of contacts in uppermost prelimbic layer I onto dendrites of pyramidal neurons, corticostriatal neurons and layer I inhibitory interneurons. Prefrontal cortex has long been associated with decision making. Specifically, corticostriatal neurons in rat prelimbic cortex play an important role in cost–benefit decision making. Although recent experiments have detailed the physiology of this area in thalamocortical circuits, the extent of the impact of ventromedial thalamic input on corticostriatal neurons or layer I inhibitory interneurons has not been explored. Our quantitative anatomical results provide evidence that most ventromedial thalamic input to pyramidal neurons is provided to corticostriatal neurons and that overall more contacts are made onto the population of excitatory than onto the population of inhibitory neurons

    Rebuilding a realistic corticostriatal “social network” from dissociated cells

    Get PDF
    Many of the methods available for the study of cortical influences on striatal neurons have serious problems. In vivo the connectivity is so complex that the study of input from an individual cortical neuron to a single striatal cell is nearly impossible. Mixed corticostriatal cultures develop many connections from striatal cells to cortical cells, in striking contrast to the fact that only connections from cortical cells to striatal cells are present in vivo. Furthermore, interneuron populations are over-represented in organotypic cultures. For these reasons, we have developed a method for growing cortical and striatal neurons in separated compartments that allows cortical neurons to innervate striatal cells in culture. The method works equally well for acutely dissociated or cryopreserved neurons and allows a number of manipulations that are not otherwise possible. Either cortical or striatal compartments can be transfected with channel rhodopsins. The activity of both areas can be recorded in multielectrode arrays or individual patch recordings from pairs of cells. Finally, corticostriatal connections can be severed acutely. This procedure enables determination of the importance of corticostriatal interaction in the resting pattern of activity. These cultures also facilitate development of sensitive analytical network methods to track connectivity

    The Corticostriatal System in Dissociated Cell Culture

    Get PDF
    The sparse connectivity within the striatum in vivo makes the investigation of individual corticostriatal synapses very difficult. Most studies of the corticostriatal input have been done using electrical stimulation under conditions where it is hard to identify the precise origin of the cortical input. We have employed an in vitro dissociated cell culture system that allows the identification of individual corticostriatal pairs and have been developing methods to study individual neuron inputs to striatal neurons. In mixed corticostriatal cultures, neurons had resting activity similar to the system in vivo. Up/down states were obvious and seemed to encompass the entire culture. Mixed cultures of cortical neurons from transgenic mice expressing green fluorescent protein with striatal neurons from wild-type mice of the same developmental stage allowed visual identification of individual candidate corticostriatal pairs. Recordings were performed between 12 and 37 days in vitro (DIV). To investigate synaptic connections we recorded from 69 corticostriatal pairs of which 44 were connected in one direction and 25 reciprocally. Of these connections 41 were corticostriatal (nine inhibitory) and 53 striatocortical (all inhibitory). The observed excitatory responses were of variable amplitude (−10 to −370 pA, n = 32). We found the connections very secure – with negligible failures on repeated stimulation (approximately 1 Hz) of the cortical neuron. Inhibitory corticostriatal responses were also observed (−13 to −314 pA, n = 9). Possibly due to the mixed type of culture we found an inhibitory striatocortical response (−14 to −598 pA, n = 53). We are now recording from neurons in separate compartments to more closely emulate neuroanatomical conditions but still with the possibility of the easier identification of the connectivity

    Striatal bilateral control of skilled forelimb movement

    Get PDF
    Skilled motor behavior requires bihemispheric coordination, and participation of striatal outputs originating from two neuronal groups identified by distinctive expression of D1 or D2 dopamine receptors. We trained mice to reach for and grasp a single food pellet and determined how the output pathways differently affected forelimb trajectory and task efficiency. We found that inhibition and excitation of D1-expressing spiny projection neurons (D1SPNs) have a similar effect on kinematics results, as if excitation and inhibition disrupt the whole ensemble dynamics and not exclusively one kind of output. In contrast, D2SPNs participate in control of target accuracy. Further, ex vivo electrophysiological comparison of naive mice and mice exposed to the task showed stronger striatal neuronal connectivity for ipsilateral D1 and contralateral D2 neurons in relation to the paw used. In summary, while the output pathways work together to smoothly execute skill movements, practice of the movement itself changes synaptic patterns.journal articl

    Striatal interneurons in dissociated cell culture

    Get PDF
    In addition to the well-characterized direct and indirect projection neurons there are four major interneuron types in the striatum. Three contain GABA and either parvalbumin, calretinin or NOS/NPY/somatostatin. The fourth is cholinergic. It might be assumed that dissociated cell cultures of striatum (typically from embryonic day E18.5 in rat and E14.5 for mouse) contain each of these neuronal types. However, in dissociated rat striatal (caudate/putamen, CPu) cultures arguably the most important interneuron, the giant aspiny cholinergic neuron, is not present. When dissociated striatal neurons from E14.5 Sprague–Dawley rats were mixed with those from E18.5 rats, combined cultures from these two gestational periods yielded surviving cholinergic interneurons and representative populations of the other interneuron types at 5 weeks in vitro. Neurons from E12.5 CD-1 mice were combined with CPu neurons from E14.5 mice and the characteristics of striatal interneurons after 5 weeks in vitro were determined. All four major classes of interneurons were identified in these cultures as well as rare tyrosine hydroxylase positive interneurons. However, E14.5 mouse CPu cultures contained relatively few cholinergic interneurons rather than the nearly total absence seen in the rat. A later dissection day (E16.5) was required to obtain mouse CPu cultures totally lacking the cholinergic interneuron. We show that these cultures generated from two gestational age cells have much more nearly normal proportions of interneurons than the more common organotypic cultures of striatum. Interneurons are generated from both ages of embryos except for the cholinergic interneurons that originate from the medial ganglionic eminence of younger embryos. Study of these cultures should more accurately reflect neuronal processing as it occurs in the striatum in vivo. Furthermore, these results reveal a procedure for parallel culture of striatum and cholinergic depleted striatum that can be used to examine the function of the cholinergic interneuron in striatal networks

    An Introspective Approach: A Lifetime of Parkinson’s Disease Research and Not Much to Show for It Yet?

    No full text
    I feel part of a massive effort to understand what is wrong with motor systems in the brain relating to Parkinson’s disease. Today, the symptoms of the disease can be modified slightly, but dopamine neurons still die; the disease progression continues inexorably. Maybe the next research phase will bring the power of modern genetics to bear on halting, or better, preventing cell death. The arrival of accessible human neuron assemblies in organoids perhaps will provide a better access to the processes underlying neuronal demise

    Basal ganglia—thalamus and the “crowning enigma”

    No full text
    When Hubel (1982) referred to layer 1 of primary visual cortex as …a ‘crowning mystery’ to keep area-17 physiologists busy for years to come... he could have been talking about any cortical area. In the 80’s and 90’s there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1), the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU) input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory cortex before focusing on motor cortex
    corecore